The Thirty-Second Innovative Applications of Artificial Intelligence Conference (IAAI-20)

Calorie Estimation in a Real-World Recipe Service

Jun Harashima, Makoto Hiramatsu, Satoshi Sanjo
Cookpad Inc.
Yebisu Garden Place Tower 12F, 4-20-3 Ebisu, Shibuya-ku, Tokyo
{jun-harashima, himkt, satoshi-sanjo } @cookpad.com

Abstract

Cooking recipes play an important role in promoting a
healthy lifestyle, and a vast number of user-generated recipes
are currently available on the Internet. Allied to this growth
in the amount of information is an increase in the number
of studies on the use of such data for recipe analysis, recipe
generation, and recipe search. However, there have been few
attempts to estimate the number of calories per serving in
a recipe. This study considers this task and introduces two
challenging subtasks: ingredient normalization and serving
estimation. The ingredient normalization task aims to convert
the ingredients written in a recipe (e.g., & (f££17A), which
says “sesame oil (for finishing)” in Japanese) into their canon-
ical forms (e.g., Z&:#, sesame oil) so that their calorific con-
tent can be looked up in an ingredient dictionary. The serv-
ing estimation task aims to convert the amount written in the
recipe (e.g., Nf@%, N pieces) into the number of servings
(e.g., M A%, M people), thus enabling the calories per serv-
ing to be calculated. We apply machine learning-based meth-
ods to these tasks and describe their practical deployment in
Cookpad, the largest recipe service in the world. A series of
experiments demonstrate that the performance of our meth-
ods is sufficient for use in real-world services.

Introduction

Developments in machine learning (ML)-related technolo-
gies continue to advance and focus on an ever-wider range
of data and applications. In particular, the field of healthcare
is likely to be dramatically changed by the data-processing
capabilities of ML.

Cooking recipes are one such source of data, and there
are a vast number of recipes currently available on the Inter-
net. For example, Cookpad and Yummly, the largest recipe
services in the world, contain more than 5.5 million and 2.0
million recipes, respectively. A considerable proportion of
these recipes are homemade—many people write their own
recipes and upload them to the Internet.

As the popularity of recipes has grown, so too has the
number of ML-related studies that use the data included
within them to perform tasks such as recipe analysis, recipe
generation, and recipe search. A variety of recipe datasets

Copyright (© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

13306

are available, and related workshops such as CEA and
MADiMa are held every year.

However, there has been little effort to address calorie es-
timation, which is one of the most important tasks in the field
of healthcare. More precisely, although some studies have
addressed calorie estimation from food photos, few studies
have addressed this task from recipes.

One of our challenges in this study is to address the calo-
rie estimation task for a recipe. To do so, we must tackle two
challenging subtasks. The first is ingredient normalization,
in which the goal is to convert the ingredients written in a
recipe into their canonical forms in an ingredient dictionary.
For user-generated recipes especially, we observe a variety
of issues in the ingredient lists, such as orthographic vari-
ants, abbreviations, symbols, and parentheses. We have to
overcome these issues to enable the calorie contents of the
ingredients to be looked up in an ingredient dictionary.

The second subtask is serving estimation, which aims to
convert an amount written in a recipe into a number of serv-
ings. The amount describes how much volume the recipe
produces. The amount in a user-generated recipe is often
written freely. Thus, an amount may not be expressed in
terms of M people but as, for example, N pieces, N slices,
or N plates. These amounts need to be converted into the
number of servings (i.e., for M people) so that the calories
per serving can be calculated.

Another challenge in this study is to deploy ML-based
methods for the above tasks in our real-world recipe service.
Relatively little is known about the practical issues of intro-
ducing ML-based methods into real industrial scenarios. We
consider this issue for each task, design a deployment archi-
tecture for our methods, and deploy them in our service.

In summary, the contributions of this study are as follows:

This is a pioneering attempt at calorie estimation for on-
line recipes that exposes the fundamental difficulties of
such a task.

The two subtasks of ingredient normalization and serving
estimation are introduced and explored using ML-based
methods.

Practical issues related to deploying our methods in Cook-
pad, a real-world recipe service, are highlighted through a
case study.

(6515 | SATHRBEDTOELLYS | title
/ \ EHSIRBVBVBEVWSKICT 1D
T, BREUREHTHRASREDET |
™ amount description
(\sk2f@%)
LU 60g
25 40g
Bl K& U1
Y55 D) INE 1
ingredients
LU EEER12 T731/ViKY S FnZITHREEN
Ry o9, EY VmEAL, PR DLWTELS (92
BAESKECL KTHUBRE-R 9) HEULEA
H<, 5EDTEANT h. 2HESSE
Y5 BH3,
. steps

Figure 1: Example of a recipe from Cookpad.

Calorie Estimation
Task Definition

The goal of our task is to estimate the number of calories per
serving in a recipe. Generally, recipes on the Internet consist
of the following components: title, food photo, description,
amount, ingredients, and steps. Figure 1 shows an example
of a stir-fried mushroom recipe from our service. Note that
we focus on Japanese recipes in this study because over 3.1
million of the 5.5 million recipes on the service are written in
Japanese. We address calorie estimation in the recipes using
the above components. Note that the important components
of this task are the title, amount, and ingredients.

Applied Method

We estimate the calories per serving in a recipe 7 as follows:

> ier, c(@) - q(7)/100
s(r) ’

where I, represents a set of ingredients in r and ¢ represents
an ingredient in I, ¢(¢) returns the calories per 100 grams
of 4, g(i) returns the grams of ¢ in 7, and s(r) returns the
number of servings of r. In summary, ¢(r) returns the sum
of the calories in the ingredients divided by the number of
servings of the recipe.

Consider the recipe in Figure 1 as an example. We first
obtain ¢(i) and ¢(¢) for each ingredient in the recipe. For
example, the first ingredient in the recipe is L& L (shimeji
mushroom). For this ingredient, ¢(i) = 16.2, as obtained
from an ingredient dictionary, and ¢(¢) = 60. We then obtain
s(r) for the recipe. In this case, as the amount is /2853 (2
small bowls), s(r) can be estimated as 2. Finally, we obtain
¢(r) using Equation (1).

c(r) = (1

13307

Table 1: Examples of entries in an ingredient dictionary.

(a) shimeji mushroom

keal 16.2
composition per 100 grams | salt equivalent 0.0
R4 (pack) 100.0
grams per unit % (sack) 100.0
(b) white dashi
kcal 49.0
composition per 100 grams | salt equivalent 13.2
XL (tablespoon) 18.0
grams per unit NE L (teaspoon) 6.0

Two Problems to Solve

Although the idea underlying our method is simple, it in-
volves two problems that need to be solved. First, it is diffi-
cult to obtain ¢(¢). Consider again the recipe in Figure 1. We
need to look up L& L in an ingredient dictionary to obtain
¢(1) for the ingredient. However, we cannot do this without
normalizing the word. Suppose that the dictionary has an
entry in Table 1 (a). This entry is for ¥4 <, which is an or-
thographic variant of L& C . We first have to normalize L& L
to & # < to use the information in the entry.

Note that it is not difficult to obtain ¢(¢) if we can look up
the ingredients in the dictionary. Consider the third ingredi-
ent in Figure 1, which is A72L (white dashi) with a quan-
tity of x& L1 (1 tablespoon). From this quantity, we cannot
determine how many grams of this ingredient are needed.
However, if the entry in Table 1 (b) is available, we can de-
termine that 18.0 grams are needed.

Second, it is difficult to obtain s(r). There is no standard
way of writing the amount in user-generated recipes. Thus,
it may not be in terms of M people but in terms of, for ex-
ample, N pieces, N slices, or N plates. For example, the
amount in Figure 1 is written as /N#2f8% (2 small bowls).
Recipes cannot be compared without knowing the number of
servings (i.e., M people served), even if the sum of the calo-
ries in their ingredients are known. Thus, we have to convert
the amount in each recipe into the number of servings.

Ingredient Normalization
Task Definition

As described in the previous section, the goal of this task is
to normalize ingredients in a recipe to their canonical forms.
Table 2 presents some examples of this task. Because people
freely express the ingredients in their recipes, we have to
address a variety of issues in this task.

Table 2 (a) lists several issues related to synonymous
expressions. The first and second examples are related to
orthographic variants and abbreviations, respectively. The
third one is related to spelling mistakes. The final expres-
sion is correct, but represents a general synonymous rela-

Table 2: Examples of ingredient normalization.

(a) Examples related to synonymous expressions.

ingredient | canonical form | note
A ISALA orthographic
(carrot) (carrot) variants
#;f-F F-FhE ..

; . : . abbreviations
(spring onion) (spring onion)
THRA R 7RA K spelling
(avocado) (avocado) mistakes
BEHE MY AT th
(potato) (potato) other

(b) Examples related to supplementary expressions.

ingredient | canonical form | note

O e symbols
(© miso) (miso)

O | parentheses
(oil (for frying)) (oil)

HEE B

(sugar) (sugar) prefix
hhiEo—xX<1)— a—X<v1— other
(rosemary, if any) (rosemary)

tionship where the latter word is commonly used. Note that,
unlike examples for orthographic variants, those for the last
category have different pronunciations. Whereas both A%
and [zA LA are pronounced “ninjin,” E#% and C+h'1 % are
pronounced “bareisyo” and “jagaimo,” respectively.

Table 2 (b) lists issues related to supplementary expres-
sions. The first and second examples contain symbols and
parentheses that should be removed in this task. The third
example contains the prefix &, which adds a degree of polite-
ness to some words and should be removed prior to looking
up the words in a dictionary. We sometimes need to remove
other unnecessary expressions, as in the last example.

As these phenomena can occur simultaneously, each in-
gredient may have a large number of expressions in a real-
world recipe service. For example, L & 3# (soy sauce) has
more than 100 expressions in Cookpad, such as oL & 5.
This makes it more difficult to normalize ingredients into
their canonical forms.

Applied Method

We regard this task as a translation problem to which a neu-
ral translation model (encoder—decoder model) can be ap-
plied. An overview of our method is illustrated in Figure 2.
The method takes an ingredient as input. The string is split
into characters or subwords, and these are fed into the en-
coder individually. The decoder receives the output from
the encoder and generates pieces one by one. We obtain a
canonical form by concatenating the generated pieces. We
do not use attention mechanisms (Bahdanau, Cho, and Ben-
gio 2015) for this task because of a pilot study (Harashima
and Yamada 2018), which revealed that the ingredients are
short strings for which such mechanisms are ineffective.

An important point underlying the design of our normal-
ization method is that we are strongly motivtated by its

13308

canonical form of the ingredient
AL

f 1

Y1 Y2 “ M
softmax softmax softmax

N S

| encoder }—>| decoder |
1T

L)
1

original string of an ingredient

Figure 2: Neural translation for ingredient normalization.

performance when deployed. In other words, we keep the
method as simple as possible. There is a vast number of
mechanisms that can be added to encoder—decoder models,
especially for machine translation. For ingredient normal-
ization, we also investigated mechanisms for controlling the
output of the decoder (Harashima and Yamada 2018). How-
ever, we do not use such mechanisms in our service because
they make our method complex and do not contribute pro-
portionately to its improvement.

Serving Estimation
Task Definition

The goal of serving estimation is to convert the amount
stated in a recipe into the number of servings. Table 3
presents examples of this task. Similar to the ingredient list
in a recipe, the amount is written freely by the recipe author,
and so a variety of issues must be addressed in this task.

The first example in Table 3 is one of the easiest cases, in
which the value in the amount is just the number of servings.
The second example is more difficult because we need to
know that & (go), a traditional Japanese unit, is used for two
servings of rice. Note that 4> (worth) is a Japanese suffix that
is attached to various units such as m (plate) and &. Because
the suffix does not contain important information, we can
ignore it in this task. In the third example, more human-like
thinking is needed. Fourteen cookies are too much for one
person, while one cookie is (generally) not enough. Three
dietitians who were recruited for the annotation task consid-
ered two cookies per person to be a suitable serving. The
final example needs some additional thinking: a tart is usu-
ally divided into 8, 6, or 4 parts depending on its size, and
the annotators selected 8 parts for an 18-cm mold.

Note that there are several answers for some recipes. Al-
though our annotators estimated the number of servings as
eight in the last example, other people could estimate it as
six, which cannot be considered incorrect. We do not pursue
this issue in our service; our aim is to develop a method that
estimates the number of servings in a similar manner to that
of the people who use the recipes.

Table 3: Examples of serving estimation.

title amount serving
AAFYYFAILAYESHAESL— 6mM4 6
(Spinach Curry with Coconut Oil) | (6 plates)

CAR-VLE - FLTIRA 384

(Mixed Rice with Kombu - Hijiki (5 0) 6

- Scallop) &

937/ —39v%— 141K 7
(Granola Cookies) (14 pieces)

RoFxoBIL b+ 18cm#%)L +E]
(Pumpkin Tart) (18-cm tart mold)

Applied Method

We evaluated two neural classification models for serving
estimation. Figure 3 gives overviews of the models. Whereas
the model in Figure 3 (a) uses either the title or the amount
of a recipe, that in Figure 3 (b) uses both the recipe’s title
and amount. In the models, encoders take this information
as their inputs and generate a vector for the text as their
output. Again, each piece of text is split into characters or
subwords. The output vectors are then concatenated in the
multi-source model. Next, the dense layers receive the (con-
catenated) vector and transform it into a K -dimensional vec-
tor, where K represents the number of categories, such as
one and two, which correspond with the possible serving
values. The category with the highest probability is selected
as the final number of servings for the recipe.

It is important to note that serving estimation should not
be formulated as a regression problem, but instead treated
as a classification problem. The number of servings tends
to be a multiple or divisor of the value of the amount. In
the second example in Table 3, the value is 3 and the num-
ber of servings is 6, which is a multiple of 3. In the third
example, the value is 14 and the number of servings is 7,
which is a divisor of 14. Multiples and divisors of a value are
discrete; hence, classification models, which handle discrete
categories, are more suitable for serving estimation than re-
gression models, which handle continuous values.

Deployment

The deployment of ML-based methods is an important is-
sue in real-world services. Figure 4 shows an overview of
our deployment architecture for the methods described in
the previous sections. In our case, the issue of deployment
can be divided into the following three sub-issues.

The first is how to construct training sets (as well as devel-
opment and test sets) for our models, as indicated by the red
arrows in Figure 4. This task involves collecting examples
for ingredient normalization and serving estimation, as de-
scribed in Tables 2 and 3, respectively. Thus, we asked our
three dietitians to manually annotate several recipes every
day using a simple annotation tool. The annotation results
are double-checked and then inserted into the databases.

The second sub-issue is how to construct and update our
models using the training sets, as indicated by the green ar-
rows in Figure 4. Because GPUs and deep-learning frame-

13309

"
& 9
| encoder 'ﬁ S —=3 —Y
m o .
T T T T * serving
Xa1 Xa2 X5
L T J
title or amount
(a) Single-source model.
| encoder
X1 Xp - Xy -
L J a o
T (1] =
title § 3 y
* serving
| encoder
Xa1 X3z Xa)
L J
I
amount

(b) Multi-source model.

Figure 3: Neural classification for serving estimation.

works are convenient for training, we use AWS GPU in-
stances and PyTorch, respectively. Of course, other tools,
such as GitHub and Jenkins, are also used to develop the
models and update them when our code or data change.

The third sub-issue is how to run the models in our ser-
vice, as indicated by the blue arrows in Figure 4. Every day,
we select the ingredients, especially those in newly uploaded
recipes, that have not yet been normalized, use our model to
normalize them, and insert the results into our normalization
database. Similarly, we select recipes for which the number
of servings has not yet been estimated, use our model to es-
timate the numbers, and insert the results into our estimation
database. We use AWS CPU instances for inference because
this has a relatively low computational cost. The normal-
ization and estimation results are roughly checked by our
annotators, and any errors that are located are then modi-
fied. These manually modified results are used as part of our
training sets to update our models.

After overcoming the above sub-issues, we can finally es-
timate the calories in a recipe using Equation (1) and use
this information in our service, as indicated by the yellow
arrows in Figure 4. Every day, we calculate the calories of
recipes for which the normalized ingredients and number of
servings are newly available, and provide the results to our
subscribers. Note that the results are basically accurate be-
cause the normalization and estimation results are manually
checked as described above.

inference

o

| % =
examples of training model for = ingredients
ingredients normalization (Table 2) ingredient normalization (Figure 2) M
—=0
=t N @Fj
annotation method for estimated calories our service
calorie estimation (Equation (1)) v
S S @ %
examples of training model for titles/amounts

serving estimation (Table 3)

i

inference

serving estimation (Figure 3)

e |

Figure 4: Overview of our deployment architecture for ingredient normalization, serving estimation, and calorie estimation.

Experiments
Ingredient Normalization

First, we evaluate our method for ingredient normalization.
We collected 18, 805 distinct ingredients from our service
and manually normalized them based on our internal ingre-
dient dictionary. We then removed 2, 086 ingredients whose
normalized versions were the same as their original strings
and used the remaining 16, 719 ingredients in our experi-
ment. We divided the pairs of the ingredients and their nor-
malized versions into training, development, and test sets
containing 13,375, 1,672, and 1, 672 pairs, respectively.

The configuration of our method was as follows. For the
encoder and decoder, we used long short-term memories
(LSTMs) with 2 layers, 500 units, and dropout rates of 0.2.
We also used an embedding layer with 500 units before the
LSTMs. These values were set using our development set.
We used all characters and subwords in our training set. The
character-based vocabularies for the encoder and decoder
contained 1,252 and 497 entries and the subword-based vo-
cabularies contained 2,992 and 1, 174 entries, respectively.
The segmentation model for subwords (Kudo 2018) was
trained using the 3.1 million Japanese recipes in our service.

Table 4 presents the results. The accuracy is the success
rate based on the number of exact matches between the out-
put of our methods and that of the annotators. Here, “RE”
refers to a regular expression-based method, which removes
symbols and parentheses from the beginning and end of each
input, and “ML” refers to our ML-based method.

13310

Table 4: Accuracy of ingredient normalization.

base | segmentation | accuracy

RE n/a 0.20
character 0.73
ML subword 0.71

We can see that our ML-based method successfully nor-
malized over 70% of the ingredients in the test set. The
method solved a variety of issues, as shown in Table 5, and
overcame hybrid issues related to synonymous and supple-
mentary expressions. For example, #F# (£ LIFA) (sesame
oil (for finishing)) was successfully normalized as Z%:t#
(sesame oil), overcoming issues related to orthographic vari-
ants and parentheses. In contrast, the RE-based method only
solved issues related to supplementary expressions. In this
experiment, the character-based segmentation was more ef-
fective than that based on subwords because the vocabular-
ies for subwords were too large for the information to be
efficiently embedded.

Our method made two types of normalization errors. The
first was to wrongly generate nonexistent ingredients. Con-
sider the first example in Table 6. The method wrongly nor-
malized =41 (bitter melon) to [2A%A%Y , which is a nonex-
istent word. The second error was to wrongly generate dif-
ferent ingredients. Consider the second example in the ta-
ble. The method normalized Z3& (yam) to LA 4 (potato).
Note that these errors are manually modified in our architec-

Table 5: Successful examples of ingredient normalization.

(a) Examples related to synonymous expressions.

input | system output [note

M=K VB HEWM orthographic
(potato starch) (potato starch) variants
Fos FOEA abbreviations
(ground beef) (ground beef)

K% K spelling
(mizuna) (mizuna) mistakes
%5Y Z5HAMNEL » other
(spaghetti squash) (spaghetti squash)

(b) Examples related to supplementary expressions.

input | system output [note
hEB hEH symbols

(% flour) (flour) Y

L—X (B1FHT) L—Xv arentheses
(raisin (as you like)) (raisin) p

BEE =14

(tofu) (tofu) prefix
ARl R R ek other
(chilled tomato) (tomato)

Table 6: Examples of failed ingredient normalization.

input | human outpu | system output
=#H2Y J— [ZhHYY

(bitter melon) | (bitter melon) | (nonexistent word)
BiH IIES Lohting

(yam) (yam) (potato)

ture, as described in the previous section.

There are two possible solutions that would overcome
these errors. The first is to revise our method. In our pi-
lot study (Harashima and Yamada 2018), for example, we
introduced some mechanisms to consider the existence of
the output and its similarity to the input. However, they
made our method more complex. The second solution is
thus more promising: expand the training set. This solution
would overcome errors while preserving the simplicity of
our method. We leave this task for our future work.

Serving Estimation

Next, we evaluate our method for serving estimation. In this
experiment, we first constructed a sub-dataset to investigate
the agreement rate among human annotations for this task.
We randomly selected 160 recipes from our service and
asked our three annotators to estimate the number of serv-
ings for them individually. As a result, this dataset contained
160 sets of three estimation results produced by humans.
We then constructed a main dataset to train, develop, and
test our method. We collected another 5,279 recipes from
our service and asked our annotators to estimate the number
of servings for them. Unlike the results in the sub-dataset,
each estimate in the main dataset was produced by one of the
annotators. The estimation results ranged from 1 to 20 (i.e.,
20 categories). Note that the annotators used not only the

13311

Table 7: Agreement rates on the sub-dataset.

A B] C]J rate
0.64
0.69
0.64
0.55

v IV
v

v

v |V

SNENEN

Table 8: Accuracy of serving estimation.

base | source [title [amount | segmentation | accuracy

RE | single v n/a 0.47
single | v character 0.27
single | v subword 0.28

ML single v character 0.63
single v subword 0.63
multi v v character 0.61
multi v v subword 0.62

title and amount from the recipes, but also other information
such as the ingredient list when producing their estimations.
We divided the recipes into training, development, and test
sets containing 4, 223, 528, and 528 recipes, respectively.

The configuration of our method was as follows. We used
LSTMs for the encoders, with 2 layers, 20 units, and dropout
rates of 0.2 based on the results obtained using the de-
velopment set. Similarly, each embedding layer before the
LSTMs had 20 units. We used all characters and subwords
in the training set. The character-based vocabularies for the
title and amount encoders contained 1,323 and 252 entries,
and those based on subwords contained 2,620 and 304 en-
tries, respectively. The subword segmentation model was the
same as that used in the ingredient normalization experi-
ment. There were 2 dense layers, one containing 40 units and
the other containing 20 units for multi-source models. For
single-source models, both layers contained 20 units each.

Table 7 presents the results for the sub-dataset to investi-
gate the annotator agreement rate. A, B, and C denote our
three annotators. As shown in the table, the agreement rates
between two annotators and between three annotators were
0.64—0.69 and 0.55, respectively. There are several answers
for some recipes. Sweets recipes, especially those for large
amounts, are a typical example. For instance, the number
of servings for a recipe titled 73> <z (financier) with a
stated amount of 14f8 (14 pieces) was estimated as 14 by two
annotators and 7 by the other, both of which are potentially
correct. Conversely, the annotators estimated the same num-
ber of servings for over half of the recipes, although there
were many possible answers.

Table 8 presents the results for the main dataset. The RE-
based method, which extracted a value from each amount,
achieved an accuracy of 0.47. This suggests that approx-
imately half of the recipes in our test set require smarter
methods than this simple approach. Our ML-based method
that used the amount information achieved accuracy rates
greater than 0.60, and thus is better suited to this task. Al-
though the subword-based models achieve slightly higher
performance than the character-based ones, the differences

Table 9: Successful and failed examples of serving estimation.

title [amount [human | system (single) [system (multi)
Saf—Ry 2{& 9 9 9
(Sugar Bread) (2 pieces)

EZ X A 17]] g
(Simple Raisin Bread) (1 loaf)

LHLBHRFFS IS5 180285 9 9 4
(Chewy Korean Vegetable Pancake) (2 frying pans)

YFRF DI a0vsABREICE 8fEs 4 3 4
(Small Tsuna and Potato Croquettes = also for Lunch Box) | (8 pieces)

HSEZHDY vx— IR 16 10 10
(Cookies with Less Sugar) (1 iron plate)

between them are small in this experiment.

Surprisingly, the single-source models that used only
amount information outperformed the multi-source models.
Essentially, the number of servings for a recipe cannot be
estimated without its title information. Suppose that a recipe
has 1184 (1 piece) as an amount. If its title is =7« > (muf-
fin), the number of servings is probably one. However, if the
titleis #—= (cake), the number is probably 8, 6, or 4. There-
fore, it seems strange that the single-source models outper-
formed the multi-source ones.

There are two reasons for the relative success of the
single-source models. One is that, in many recipes, the num-
ber of servings is often N when the amount information
states, for example, N pieces, IV slices, or IV plates. From
the results for the RE-based method, we can see that this
was true for approximately half of our recipes, so it is clearly
possible to estimate the number of servings for the recipes
using only the amount information. The second reason is a
lack of training examples. The title information was neces-
sary for the other half of the recipes. However, the number
of such examples in our training set was too small (approx-
imately half of the 4, 223 examples) to train two encoders
using the title and amount information.

Based on the above findings, we implemented the mod-
els in our service according to the following strategy. First,
we introduced our single-source model with amount infor-
mation because it achieved the best performance in our ex-
periment. Then, we expanded our training set based on our
deployment architecture, as indicated by the red arrows in
Figure 4. Finally, we plan to replace the model with our
multi-source model when the latter can outperform the for-
mer using the collected examples. We are now in the phase
of data expansion, and collecting sufficient examples is an
ongoing task.

Table 9 presents some examples of successes and failures
of our method. Here, “human,” “system (single),” and ““sys-
tem (multi)” refer to the output from our annotators, the
single-source model, and the multi-source model, respec-
tively. The results of both models are based on subwords.
Whereas the single- and multi-source models used only the
title and/or amount information in a recipe for their estima-
tions, our annotators used all information in the recipe.

The first example in the table is an easy case for which
both models successfully estimated a value of 2 for the 2{&
(2 pieces) of bread recipe. Although both models succeeded

13312

in the second example, they additionally learned through our
training set that 1/ (1 loaf) of bread frequently serves eight
people. The multi-source model wrongly estimated the num-
ber of servings using the title information in the third exam-
ple. This is because our training set contained some exam-
ples in which one Korean pancake serves two people. In con-
trast, in the absence of title information, the single-source
model straightforwardly estimated a value of eight in the
fourth example. However, one small croquette is generally
not sufficient for one person. The final example is a diffi-
cult case in which both the single- and multi-source models
failed. The number of servings for this recipe depends on the
size of an #4#R (iron plate). We might need quantity informa-
tion about the ingredients, such as the amount of flour in the
recipe, to output the same estimate as that of a human.

Calorie Estimation

Finally, we consider an example recipe for which the num-
ber of calories was estimated by our methods. Table 10 (a)
presents the values of ¢(7) and ¢() for ingredients in an asari
clam rice recipe. For each ingredient, we translated the orig-
inal string in the recipe into its canonical form using our in-
gredient normalization method. In this example, the method
successfully solved an orthographic variant issue in #&Y
(asari clam), prefix issues in &% (rice), #i& (salt), and &&
(sake), and a hybrid issue in &#&# (soy sauce). We then
obtained the calories per 100 grams of ingredients and the
grams per unit in the recipes from our ingredient dictionary.

Table 10 (b) lists a value of s(r) for the recipe. Using
our single-source model with amount information, the num-
ber of servings for the recipe was estimated as six. This is
correct, because the quantity is 3&% (3 go) and 1%& of rice
serves two people. The model learned this knowledge from
our training set and used it in the estimation.

Using Equation (1), the number of calories in the recipe
was calculated at 306.6. Note that we cannot estimate the
calories in recipes for which the ingredients cannot be nor-
malized or the number of servings cannot be estimated. Nev-
ertheless, as of 2019, we have estimated the number of calo-
ries in over 100, 000 recipes provided by our service.

Related Work

Many researchers have recently focused on recipe-related
tasks such as recipe analysis (Jermsurawong and Habash

Table 10: Calorie estimation for an asari clam rice recipe.

(a) c(i) and q(7).

original [canonical [quantity [e q@
| 5
(ﬁiﬁ clam) (721:1;1 clam) (11I ;;Zk) 12.0 | 200.0
(fife) (’Ece) 53“ g’z) 358.0 | 450.0
g;f{t) (jfalt) (,ll\ a:el;;poon) 0.0 6.0
(tﬁe) (ifake) (j:; E:alt’):l;espoons) 109.0 45.0
:;(;ﬁyﬂsauce) (l;oi/js':uce) (j; E:al;)lzespoons) 710 36.0
gv’;f;clt sake) g\:f;ét sake) (j?:_::all’)?espoons) 241.0 54.0
(b) s(r).
amount | s(r)
3A
Geo) | ©

2015; Kiddon et al. 2015), recipe generation (Kiddon,
Zettlemoyer, and Choi 2016; Salvador et al. 2019), and
recipe search (Salvador et al. 2017; Carvalho et al. 2018).
A variety of recipe datasets are now available (Harashima et
al. 2016; Yagcioglu et al. 2018), and related workshops such
as CEA and MADiMa are held every year.

Nevertheless, few studies have addressed calorie estima-
tion. Some studies have attempted to estimate calorie infor-
mation from an image (i.e., food photo) (Myers et al. 2015;
Ege and Yanai 2017). However, there have been no studies
on the estimation of calories from text (i.e., recipe). This
may be because the task involves two challenging subtasks:
ingredient normalization and serving estimation.

Of these two tasks, ingredient normalization has been ad-
dressed by several researchers. There are a few dictionar-
ies (Nanba et al. 2014) that can be used to normalize ingre-
dients. Additionally, we introduced some mechanisms into
an encoder—decoder model for this task (Harashima and Ya-
mada 2018), although they were found to be impractical.

To the best of our knowledge, there have been no studies
that address serving estimation. Thus, this study is the first to
focus on this important task. Our models are based on neu-
ral machine translation (NMT) techniques (Cho et al. 2014),
particularly multi-source NMT (Zoph and Knight 2016), al-
though our focus is classification rather than translation.

Conclusion

This study is the first to attempt to combine calorie estima-
tion for online recipes and deploy ML-based methods for
this task in a real-world recipe service. We described the
task and its difficulties, and introduced two challenging sub-
tasks: ingredient normalization and serving estimation. For
the former, we applied a neural translation model; for the lat-
ter, neural classification models were used. The internal ar-
chitecture for deploying the methods in our service was de-
scribed, and experimental results were presented to demon-

13313

strate that our methods perform sufficiently well to be used
in a real-world service. We also reported that they cannot be
applied to certain ingredients and recipes. Therefore, future
work will focus on the efficient expansion of the number of
ingredients and recipes to which the methods can be applied.

References

Bahdanau, D.; Cho, K.; and Bengio, Y. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In Pro-
ceedings of ICLR 2015, 1-15.

Carvalho, M.; Cadeéne, R.; Picard, D.; Soulier, L.; Thome, N.; and
Cord, M. 2018. Cross-Modal Retrieval in the Cooking Context:
Learning Semantic Text-Image Embeddings. In Proceedings of SI-
GIR 2018, 35-44.

Cho, K.; van Merriénboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning Phrase
Representations using RNN Encoder-Decoder for Statistical Ma-
chine Translation. In Proceedings of EMNLP 2014, 1724-1734.

Ege, T., and Yanai, K. 2017. Simultaneous Estimation of Food
Categories and Calories with Multi-task CNN. In Proceedings of
MVA 2017, 172-175.

Harashima, J., and Yamada, Y. 2018. Two-StepValidation in

Character-based IngredientNormalization. In Proceedings of CEA
2018, 29-32.

Harashima, J.; Ariga, M.; Murata, K.; and Ioki, M. 2016. A Large-
Scale Recipe and Meal Data Collection as Infrastructure for Food
Research. In Proceedings of LREC 2016, 2455-2459.
Jermsurawong, J., and Habash, N. 2015. Predicting the Structure
of Cooking Recipes. In Proceedings of EMNLP 2015, 781-786.
Kiddon, C.; Ponnuraj, G. T.; Zettlemoyer, L.; and Choi, Y.
2015. Mise en Place: Unsupervised Interpretation of Instructional
Recipes. In Proceedings of EMNLP 2015, 982-992.

Kiddon, C.; Zettlemoyer, L.; and Choi, Y. 2016. Globally Coherent
Text Generation with Neural Checklist Models. In Proceedings of
EMNLP 2016, 329-339.

Kudo, T. 2018. Subword Regularization: Improving Neural Net-
work Translation Models with Multiple Subword Candidates. In
Proceedings of ACL 2018, 66-75.

Myers, A.; Johnston, N.; Rathod, V.; Korattikara, A.; and Gorban,
A. 2015. Im2Calories: towards an automated mobile vision food
diary. In Proceedings of ICCV 2015, 1233-1241.

Nanba, H.; Doi, Y.; Tsujita, M.; Takezawa, T.; and Sumiya, K.
2014. Construction of a Cooking Ontology from Cooking Recipes
and Patents. In Proceedings of CEA 2014, 507-516.

Salvador, A.; Hynes, N.; Aytar, Y.; Marin, J.; Ofli, F.; Weber, L.; and
Torralba, A. 2017. Learning Cross-modal Embeddings for Cooking
Recipes and Food Images. In Proceedings of CVPR 2017.
Salvador, A.; Drozdzal, M.; i Nieto, X. G.; and Romero, A. 2019.
Inverse Cooking: Recipe Generation from Food Images. In Pro-
ceedings of CVPR 2019.

Yagcioglu, S.; Erdem, A.; Erdem, E.; and Ikizler-Cinbis, N. 2018.
RecipeQA: A Challenge Dataset for Multimodal Comprehension
of Cooking Recipes. In Proceedings of EMNLP 2018.

Zoph, B., and Knight, K. 2016. Multi-Source Neural Translation.
In Proceedings of NAACL 2016, 30-34.

